Appendix

Proofs and notes

March 3, 2025

If you'd like to jump to another part here are direct links:

Proof: F(n)F(n1)=F(1)F(n)\cdot F(-n - 1) = F(-1)

Where

F(n)=1+(pq)pnqnpn+qnF(n) = 1+(p-q) \cdot \frac{p^n - q^n}{p^n + q^n}

and 0<p<10 < p < 1 and p+q=1p + q = 1 we will show that

F(n)F(n1)=F(1)F(n)\cdot F(-n - 1) = F(-1)

We will denote

g(n)=pnqnpn+qnf(n)=(pq)g(n)=(2p1)g(n)\begin{align} g(n) &= \frac{p^n - q^n}{p^n + q^n} \notag \\ f(n) &= (p-q) \cdot g(n) \notag \\ &= (2p - 1) \cdot g(n) \notag \\ \end{align}

so

F(n)=1+f(n)F(n) = 1+f(n)

We also know that

g(n)=g(n)g(n) = g(-n)

since

g(n)=pnqnpn+qn=1pn1qn1pn+1qn=qnpnqnpnpnqnqnpnqn+pnpnqn=qnpnpn+qn=pnqnpn+qng(n)=g(n)\begin{align} g(-n) &= \frac{p^{-n} - q^{-n}}{p^{-n} + q^{-n}} \notag \\ &= \frac{\frac{1}{p^n} - \frac{1}{q^n}}{\frac{1}{p^n} + \frac{1}{q^n}} \notag \\ &= \frac{\frac{q^n}{p^nq^n} - \frac{p^n}{p^nq^n}}{\frac{q^n}{p^nq^n} + \frac{p^n}{p^nq^n}} \notag \\ &= \frac{q^n - p^n}{p^n + q^n} \notag \\ &= -\frac{p^n - q^n}{p^n + q^n} \notag \\ g(-n) &= -g(n) \notag \end{align}

When p=0.5p = 0.5 this is trivial since F(n)=0nZF(n) = 0 \forall n \in \Z.

In the case p0.5p \neq 0.5 we begin by showing

F(1)=1+(pq)p1q1p1+q1=1+(p(1p))p1(1p)1p1+(1p)1=1+(2p1)1p11p1p+11p=1+(2p1)1pp(1p)pp(1p)1pp(1p)+pp(1p)F(1)=1+(2p1)(12p)\begin{align} F(-1) &= 1+(p-q) \cdot \frac{p^{-1} - q^{-1}}{p^{-1} + q^{-1}} \notag \\ &= 1+(p-(1-p)) \cdot \frac{p^{-1} - (1-p)^{-1}}{p^{-1} + (1-p)^{-1}} \notag \\ &= 1+(2p-1) \cdot \frac{\frac{1}{p} - \frac{1}{1-p}}{\frac{1}{p} + \frac{1}{1-p}} \notag \\ &= 1+(2p-1) \cdot \frac{\frac{1-p}{p(1-p)} - \frac{p}{p(1-p)}}{\frac{1-p}{p(1-p)} + \frac{p}{p(1-p)}} \notag \\ F(-1) &= 1+(2p-1) \cdot (1-2p) \end{align}

Now consider

F(n)F(n1)=(1+f(n))(1+f(n1))=1+f(n)+f(n1)+f(n)f(n1)=1+(2p1)g(n)+(2p1)g(n1)+(2p1)2g(n)g(n1)=1+(2p1)(g(n)g(n+1)(2p1)g(n)g(n+1))\begin{align} &F(n)\cdot F(-n - 1) = (1+f(n))\cdot (1+f(-n-1)) \notag \\ &= 1+f(n)+f(-n-1)+f(n)\cdot f(-n-1) \notag \\ &= 1+(2p-1)g(n)+(2p-1)g(-n-1)+(2p-1)^2g(n)\cdot g(-n-1) \notag \\ &= 1+(2p-1)(g(n)-g(n+1)-(2p-1)g(n)\cdot g(n+1)) \\ \end{align}

Comparing equations (1)(1) and (2)(2) we see that the equations have equality if we show that

g(n)g(n+1)(2p1)g(n)g(n+1)=12pg(n)-g(n+1)-(2p-1)g(n)\cdot g(n+1) = 1-2p

or, negating both sides,

(2p1)g(n)g(n+1)g(n)+g(n+1)=2p1(2p-1)g(n)\cdot g(n+1)-g(n)+g(n+1) = 2p-1

Moving terms we obtain

(2p1)g(n)g(n+1)(2p1)=g(n)g(n+1)(2p-1)g(n)\cdot g(n+1) - (2p-1) = g(n) - g(n+1)

Where we can factor to obtain

(2p1)(g(n)g(n+1)1)=g(n)g(n+1)(2p-1) (g(n)\cdot g(n+1) - 1) = g(n) - g(n+1)

Then after dividing and moving terms, which we can do because p0.5p \neq 0.5, we get

g(n)g(n+1)=1+g(n)g(n+1)2p1g(n)\cdot g(n+1) = 1 + \frac{g(n) - g(n+1)}{2p-1}

So we will show that this equality holds.

First, consider

g(n)g(n+1)=pnqnpn+qnpn+1qn+1pn+1+qn+1=p2n+1+q2n+1pnqn+1pn+1qnp2n+1+q2n+1+pnqn+1+pn+1qn=1+2pnqn+12pn+1qnp2n+1+q2n+1+pnqn+1+pn+1qn\begin{align} g(n)\cdot g(n+1) &= \frac{p^n - q^n}{p^n + q^n} \cdot \frac{p^{n+1} - q^{n+1}}{p^{n+1} + q^{n+1}} \notag \\ &= \frac{p^{2n+1} + q^{2n+1} - p^nq^{n+1} - p^{n+1}q^n}{p^{2n+1} + q^{2n+1} + p^nq^{n+1} + p^{n+1}q^n} \notag \\ &= 1 + \frac{- 2p^nq^{n+1} - 2p^{n+1}q^n} {p^{2n+1} + q^{2n+1} + p^nq^{n+1} + p^{n+1}q^n} \end{align}

Now consider

1+g(n)g(n+1)2p1=1+pnqnpn+qnpn+1qn+1pn+1+qn+12p1=1+(pnqn)(pn+1+qn+1)(pn+qn)(pn+1+qn+1)(pn+1qn+1)(pn+qn)(pn+qn)(pn+1+qn+1)2p1=1+p2n+1+pnqn+1pn+1qnq2n+1p2n+1pn+1qn+pnqn+1+q2n+1p2n+1+q2n+1+pnqn+1+pn+1qn2p1=1+2pnqn+12pn+1qnp2n+1+q2n+1+pnqn+1+pn+1qn2p1=1+2pnqn+12pn+1qn2p1p2n+1+q2n+1+pnqn+1+pn+1qn\begin{align} &1 + \frac{g(n) - g(n+1)}{2p-1} = 1 + \frac{\frac{p^n - q^n}{p^n + q^n} - \frac{p^{n+1} - q^{n+1}}{p^{n+1} + q^{n+1}}}{2p-1} \notag \\ &= 1 + \frac{\frac{(p^n - q^n)\cdot (p^{n+1} + q^{n+1})}{(p^n + q^n)\cdot (p^{n+1} + q^{n+1})} - \frac{(p^{n+1} - q^{n+1})\cdot (p^n + q^n)}{(p^n + q^n)\cdot (p^{n+1} + q^{n+1})}}{2p-1} \notag \\ &= 1 + \frac{\frac{p^{2n+1} + p^nq^{n+1} - p^{n+1}q^n - q^{2n+1} - p^{2n+1} - p^{n+1}q^n + p^nq^{n+1} + q^{2n+1}}{p^{2n+1} + q^{2n+1} + p^nq^{n+1} + p^{n+1}q^n}}{2p-1} \notag \\ &= 1 + \frac{\frac{2p^nq^{n+1} - 2p^{n+1}q^n}{p^{2n+1} + q^{2n+1} + p^nq^{n+1} + p^{n+1}q^n}}{2p-1} \notag \\ &= 1 + \frac{\frac{2p^nq^{n+1} - 2p^{n+1}q^n}{2p-1}}{p^{2n+1} + q^{2n+1} + p^nq^{n+1} + p^{n+1}q^n} \end{align}

Similar to before, by examining equations (3)(3) and (4)(4) we can determine equality if we can show that

2pnqn+12pn+1qn=2pnqn+12pn+1qn2p1- 2p^nq^{n+1} - 2p^{n+1}q^n = \frac{2p^nq^{n+1} - 2p^{n+1}q^n}{2p-1}

Multiplying by 2p12p-1 gives

4pn+1qn+14pn+2qn+2pnqn+1+2pn+1qn=2pnqn+12pn+1qn- 4p^{n+1}q^{n+1} - 4p^{n+2}q^n + 2p^nq^{n+1} + 2p^{n+1}q^n = 2p^nq^{n+1} - 2p^{n+1}q^n

Canceling and moving terms yields

4pn+1qn+14pn+2qn=4pn+1qn- 4p^{n+1}q^{n+1} - 4p^{n+2}q^n = -4p^{n+1}q^n

After factoring

4pn+1qn(q+p)=4pn+1qn- 4p^{n+1}q^n \cdot (q+p) = -4p^{n+1}q^n

Since q=1pq = 1-p,

q+p=(1p)+p=1q + p = (1-p)+p = 1

So

4pn+1qn=4pn+1qn- 4p^{n+1}q^n = - 4p^{n+1}q^n

and we have shown equality.

Thus

F(n)F(n1)=F(1)F(n)\cdot F(-n - 1) = F(-1)